1 From 43dfe54ce017c8d37eaec480a2f13a492bbc4203 Mon Sep 17 00:00:00 2001
2 From: serge-sans-paille <sguelton@redhat.com>
3 Date: Thu, 25 Feb 2021 14:24:14 +0100
4 Subject: [PATCH 2/2] [PATCH][lld] Import compact_unwind_encoding.h from
5 libunwind
6
7 This avoids an implicit cross package dependency
8 ---
9 lld/include/mach-o/compact_unwind_encoding.h | 477 +++++++++++++++++++++++++++
10 1 file changed, 477 insertions(+)
11 create mode 100644 lld/include/mach-o/compact_unwind_encoding.h
12
13 diff --git a/lld/include/mach-o/compact_unwind_encoding.h b/lld/include/mach-o/compact_unwind_encoding.h
14 new file mode 100644
15 index 0000000..5301b10
16 --- /dev/null
17 +++ b/lld/include/mach-o/compact_unwind_encoding.h
18 @@ -0,0 +1,477 @@
19 +//===------------------ mach-o/compact_unwind_encoding.h ------------------===//
20 +//
21 +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
22 +// See https://llvm.org/LICENSE.txt for license information.
23 +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
24 +//
25 +//
26 +// Darwin's alternative to DWARF based unwind encodings.
27 +//
28 +//===----------------------------------------------------------------------===//
29 +
30 +
31 +#ifndef __COMPACT_UNWIND_ENCODING__
32 +#define __COMPACT_UNWIND_ENCODING__
33 +
34 +#include <stdint.h>
35 +
36 +//
37 +// Compilers can emit standard DWARF FDEs in the __TEXT,__eh_frame section
38 +// of object files. Or compilers can emit compact unwind information in
39 +// the __LD,__compact_unwind section.
40 +//
41 +// When the linker creates a final linked image, it will create a
42 +// __TEXT,__unwind_info section. This section is a small and fast way for the
43 +// runtime to access unwind info for any given function. If the compiler
44 +// emitted compact unwind info for the function, that compact unwind info will
45 +// be encoded in the __TEXT,__unwind_info section. If the compiler emitted
46 +// DWARF unwind info, the __TEXT,__unwind_info section will contain the offset
47 +// of the FDE in the __TEXT,__eh_frame section in the final linked image.
48 +//
49 +// Note: Previously, the linker would transform some DWARF unwind infos into
50 +// compact unwind info. But that is fragile and no longer done.
51 +
52 +
53 +//
54 +// The compact unwind endoding is a 32-bit value which encoded in an
55 +// architecture specific way, which registers to restore from where, and how
56 +// to unwind out of the function.
57 +//
58 +typedef uint32_t compact_unwind_encoding_t;
59 +
60 +
61 +// architecture independent bits
62 +enum {
63 + UNWIND_IS_NOT_FUNCTION_START = 0x80000000,
64 + UNWIND_HAS_LSDA = 0x40000000,
65 + UNWIND_PERSONALITY_MASK = 0x30000000,
66 +};
67 +
68 +
69 +
70 +
71 +//
72 +// x86
73 +//
74 +// 1-bit: start
75 +// 1-bit: has lsda
76 +// 2-bit: personality index
77 +//
78 +// 4-bits: 0=old, 1=ebp based, 2=stack-imm, 3=stack-ind, 4=DWARF
79 +// ebp based:
80 +// 15-bits (5*3-bits per reg) register permutation
81 +// 8-bits for stack offset
82 +// frameless:
83 +// 8-bits stack size
84 +// 3-bits stack adjust
85 +// 3-bits register count
86 +// 10-bits register permutation
87 +//
88 +enum {
89 + UNWIND_X86_MODE_MASK = 0x0F000000,
90 + UNWIND_X86_MODE_EBP_FRAME = 0x01000000,
91 + UNWIND_X86_MODE_STACK_IMMD = 0x02000000,
92 + UNWIND_X86_MODE_STACK_IND = 0x03000000,
93 + UNWIND_X86_MODE_DWARF = 0x04000000,
94 +
95 + UNWIND_X86_EBP_FRAME_REGISTERS = 0x00007FFF,
96 + UNWIND_X86_EBP_FRAME_OFFSET = 0x00FF0000,
97 +
98 + UNWIND_X86_FRAMELESS_STACK_SIZE = 0x00FF0000,
99 + UNWIND_X86_FRAMELESS_STACK_ADJUST = 0x0000E000,
100 + UNWIND_X86_FRAMELESS_STACK_REG_COUNT = 0x00001C00,
101 + UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF,
102 +
103 + UNWIND_X86_DWARF_SECTION_OFFSET = 0x00FFFFFF,
104 +};
105 +
106 +enum {
107 + UNWIND_X86_REG_NONE = 0,
108 + UNWIND_X86_REG_EBX = 1,
109 + UNWIND_X86_REG_ECX = 2,
110 + UNWIND_X86_REG_EDX = 3,
111 + UNWIND_X86_REG_EDI = 4,
112 + UNWIND_X86_REG_ESI = 5,
113 + UNWIND_X86_REG_EBP = 6,
114 +};
115 +
116 +//
117 +// For x86 there are four modes for the compact unwind encoding:
118 +// UNWIND_X86_MODE_EBP_FRAME:
119 +// EBP based frame where EBP is push on stack immediately after return address,
120 +// then ESP is moved to EBP. Thus, to unwind ESP is restored with the current
121 +// EPB value, then EBP is restored by popping off the stack, and the return
122 +// is done by popping the stack once more into the pc.
123 +// All non-volatile registers that need to be restored must have been saved
124 +// in a small range in the stack that starts EBP-4 to EBP-1020. The offset/4
125 +// is encoded in the UNWIND_X86_EBP_FRAME_OFFSET bits. The registers saved
126 +// are encoded in the UNWIND_X86_EBP_FRAME_REGISTERS bits as five 3-bit entries.
127 +// Each entry contains which register to restore.
128 +// UNWIND_X86_MODE_STACK_IMMD:
129 +// A "frameless" (EBP not used as frame pointer) function with a small
130 +// constant stack size. To return, a constant (encoded in the compact
131 +// unwind encoding) is added to the ESP. Then the return is done by
132 +// popping the stack into the pc.
133 +// All non-volatile registers that need to be restored must have been saved
134 +// on the stack immediately after the return address. The stack_size/4 is
135 +// encoded in the UNWIND_X86_FRAMELESS_STACK_SIZE (max stack size is 1024).
136 +// The number of registers saved is encoded in UNWIND_X86_FRAMELESS_STACK_REG_COUNT.
137 +// UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION constains which registers were
138 +// saved and their order.
139 +// UNWIND_X86_MODE_STACK_IND:
140 +// A "frameless" (EBP not used as frame pointer) function large constant
141 +// stack size. This case is like the previous, except the stack size is too
142 +// large to encode in the compact unwind encoding. Instead it requires that
143 +// the function contains "subl $nnnnnnnn,ESP" in its prolog. The compact
144 +// encoding contains the offset to the nnnnnnnn value in the function in
145 +// UNWIND_X86_FRAMELESS_STACK_SIZE.
146 +// UNWIND_X86_MODE_DWARF:
147 +// No compact unwind encoding is available. Instead the low 24-bits of the
148 +// compact encoding is the offset of the DWARF FDE in the __eh_frame section.
149 +// This mode is never used in object files. It is only generated by the
150 +// linker in final linked images which have only DWARF unwind info for a
151 +// function.
152 +//
153 +// The permutation encoding is a Lehmer code sequence encoded into a
154 +// single variable-base number so we can encode the ordering of up to
155 +// six registers in a 10-bit space.
156 +//
157 +// The following is the algorithm used to create the permutation encoding used
158 +// with frameless stacks. It is passed the number of registers to be saved and
159 +// an array of the register numbers saved.
160 +//
161 +//uint32_t permute_encode(uint32_t registerCount, const uint32_t registers[6])
162 +//{
163 +// uint32_t renumregs[6];
164 +// for (int i=6-registerCount; i < 6; ++i) {
165 +// int countless = 0;
166 +// for (int j=6-registerCount; j < i; ++j) {
167 +// if ( registers[j] < registers[i] )
168 +// ++countless;
169 +// }
170 +// renumregs[i] = registers[i] - countless -1;
171 +// }
172 +// uint32_t permutationEncoding = 0;
173 +// switch ( registerCount ) {
174 +// case 6:
175 +// permutationEncoding |= (120*renumregs[0] + 24*renumregs[1]
176 +// + 6*renumregs[2] + 2*renumregs[3]
177 +// + renumregs[4]);
178 +// break;
179 +// case 5:
180 +// permutationEncoding |= (120*renumregs[1] + 24*renumregs[2]
181 +// + 6*renumregs[3] + 2*renumregs[4]
182 +// + renumregs[5]);
183 +// break;
184 +// case 4:
185 +// permutationEncoding |= (60*renumregs[2] + 12*renumregs[3]
186 +// + 3*renumregs[4] + renumregs[5]);
187 +// break;
188 +// case 3:
189 +// permutationEncoding |= (20*renumregs[3] + 4*renumregs[4]
190 +// + renumregs[5]);
191 +// break;
192 +// case 2:
193 +// permutationEncoding |= (5*renumregs[4] + renumregs[5]);
194 +// break;
195 +// case 1:
196 +// permutationEncoding |= (renumregs[5]);
197 +// break;
198 +// }
199 +// return permutationEncoding;
200 +//}
201 +//
202 +
203 +
204 +
205 +
206 +//
207 +// x86_64
208 +//
209 +// 1-bit: start
210 +// 1-bit: has lsda
211 +// 2-bit: personality index
212 +//
213 +// 4-bits: 0=old, 1=rbp based, 2=stack-imm, 3=stack-ind, 4=DWARF
214 +// rbp based:
215 +// 15-bits (5*3-bits per reg) register permutation
216 +// 8-bits for stack offset
217 +// frameless:
218 +// 8-bits stack size
219 +// 3-bits stack adjust
220 +// 3-bits register count
221 +// 10-bits register permutation
222 +//
223 +enum {
224 + UNWIND_X86_64_MODE_MASK = 0x0F000000,
225 + UNWIND_X86_64_MODE_RBP_FRAME = 0x01000000,
226 + UNWIND_X86_64_MODE_STACK_IMMD = 0x02000000,
227 + UNWIND_X86_64_MODE_STACK_IND = 0x03000000,
228 + UNWIND_X86_64_MODE_DWARF = 0x04000000,
229 +
230 + UNWIND_X86_64_RBP_FRAME_REGISTERS = 0x00007FFF,
231 + UNWIND_X86_64_RBP_FRAME_OFFSET = 0x00FF0000,
232 +
233 + UNWIND_X86_64_FRAMELESS_STACK_SIZE = 0x00FF0000,
234 + UNWIND_X86_64_FRAMELESS_STACK_ADJUST = 0x0000E000,
235 + UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT = 0x00001C00,
236 + UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF,
237 +
238 + UNWIND_X86_64_DWARF_SECTION_OFFSET = 0x00FFFFFF,
239 +};
240 +
241 +enum {
242 + UNWIND_X86_64_REG_NONE = 0,
243 + UNWIND_X86_64_REG_RBX = 1,
244 + UNWIND_X86_64_REG_R12 = 2,
245 + UNWIND_X86_64_REG_R13 = 3,
246 + UNWIND_X86_64_REG_R14 = 4,
247 + UNWIND_X86_64_REG_R15 = 5,
248 + UNWIND_X86_64_REG_RBP = 6,
249 +};
250 +//
251 +// For x86_64 there are four modes for the compact unwind encoding:
252 +// UNWIND_X86_64_MODE_RBP_FRAME:
253 +// RBP based frame where RBP is push on stack immediately after return address,
254 +// then RSP is moved to RBP. Thus, to unwind RSP is restored with the current
255 +// EPB value, then RBP is restored by popping off the stack, and the return
256 +// is done by popping the stack once more into the pc.
257 +// All non-volatile registers that need to be restored must have been saved
258 +// in a small range in the stack that starts RBP-8 to RBP-2040. The offset/8
259 +// is encoded in the UNWIND_X86_64_RBP_FRAME_OFFSET bits. The registers saved
260 +// are encoded in the UNWIND_X86_64_RBP_FRAME_REGISTERS bits as five 3-bit entries.
261 +// Each entry contains which register to restore.
262 +// UNWIND_X86_64_MODE_STACK_IMMD:
263 +// A "frameless" (RBP not used as frame pointer) function with a small
264 +// constant stack size. To return, a constant (encoded in the compact
265 +// unwind encoding) is added to the RSP. Then the return is done by
266 +// popping the stack into the pc.
267 +// All non-volatile registers that need to be restored must have been saved
268 +// on the stack immediately after the return address. The stack_size/8 is
269 +// encoded in the UNWIND_X86_64_FRAMELESS_STACK_SIZE (max stack size is 2048).
270 +// The number of registers saved is encoded in UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT.
271 +// UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION constains which registers were
272 +// saved and their order.
273 +// UNWIND_X86_64_MODE_STACK_IND:
274 +// A "frameless" (RBP not used as frame pointer) function large constant
275 +// stack size. This case is like the previous, except the stack size is too
276 +// large to encode in the compact unwind encoding. Instead it requires that
277 +// the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact
278 +// encoding contains the offset to the nnnnnnnn value in the function in
279 +// UNWIND_X86_64_FRAMELESS_STACK_SIZE.
280 +// UNWIND_X86_64_MODE_DWARF:
281 +// No compact unwind encoding is available. Instead the low 24-bits of the
282 +// compact encoding is the offset of the DWARF FDE in the __eh_frame section.
283 +// This mode is never used in object files. It is only generated by the
284 +// linker in final linked images which have only DWARF unwind info for a
285 +// function.
286 +//
287 +
288 +
289 +// ARM64
290 +//
291 +// 1-bit: start
292 +// 1-bit: has lsda
293 +// 2-bit: personality index
294 +//
295 +// 4-bits: 4=frame-based, 3=DWARF, 2=frameless
296 +// frameless:
297 +// 12-bits of stack size
298 +// frame-based:
299 +// 4-bits D reg pairs saved
300 +// 5-bits X reg pairs saved
301 +// DWARF:
302 +// 24-bits offset of DWARF FDE in __eh_frame section
303 +//
304 +enum {
305 + UNWIND_ARM64_MODE_MASK = 0x0F000000,
306 + UNWIND_ARM64_MODE_FRAMELESS = 0x02000000,
307 + UNWIND_ARM64_MODE_DWARF = 0x03000000,
308 + UNWIND_ARM64_MODE_FRAME = 0x04000000,
309 +
310 + UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001,
311 + UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002,
312 + UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004,
313 + UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008,
314 + UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010,
315 + UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100,
316 + UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200,
317 + UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400,
318 + UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800,
319 +
320 + UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK = 0x00FFF000,
321 + UNWIND_ARM64_DWARF_SECTION_OFFSET = 0x00FFFFFF,
322 +};
323 +// For arm64 there are three modes for the compact unwind encoding:
324 +// UNWIND_ARM64_MODE_FRAME:
325 +// This is a standard arm64 prolog where FP/LR are immediately pushed on the
326 +// stack, then SP is copied to FP. If there are any non-volatile registers
327 +// saved, then are copied into the stack frame in pairs in a contiguous
328 +// range right below the saved FP/LR pair. Any subset of the five X pairs
329 +// and four D pairs can be saved, but the memory layout must be in register
330 +// number order.
331 +// UNWIND_ARM64_MODE_FRAMELESS:
332 +// A "frameless" leaf function, where FP/LR are not saved. The return address
333 +// remains in LR throughout the function. If any non-volatile registers
334 +// are saved, they must be pushed onto the stack before any stack space is
335 +// allocated for local variables. The stack sized (including any saved
336 +// non-volatile registers) divided by 16 is encoded in the bits
337 +// UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK.
338 +// UNWIND_ARM64_MODE_DWARF:
339 +// No compact unwind encoding is available. Instead the low 24-bits of the
340 +// compact encoding is the offset of the DWARF FDE in the __eh_frame section.
341 +// This mode is never used in object files. It is only generated by the
342 +// linker in final linked images which have only DWARF unwind info for a
343 +// function.
344 +//
345 +
346 +
347 +
348 +
349 +
350 +////////////////////////////////////////////////////////////////////////////////
351 +//
352 +// Relocatable Object Files: __LD,__compact_unwind
353 +//
354 +////////////////////////////////////////////////////////////////////////////////
355 +
356 +//
357 +// A compiler can generated compact unwind information for a function by adding
358 +// a "row" to the __LD,__compact_unwind section. This section has the
359 +// S_ATTR_DEBUG bit set, so the section will be ignored by older linkers.
360 +// It is removed by the new linker, so never ends up in final executables.
361 +// This section is a table, initially with one row per function (that needs
362 +// unwind info). The table columns and some conceptual entries are:
363 +//
364 +// range-start pointer to start of function/range
365 +// range-length
366 +// compact-unwind-encoding 32-bit encoding
367 +// personality-function or zero if no personality function
368 +// lsda or zero if no LSDA data
369 +//
370 +// The length and encoding fields are 32-bits. The other are all pointer sized.
371 +//
372 +// In x86_64 assembly, these entry would look like:
373 +//
374 +// .section __LD,__compact_unwind,regular,debug
375 +//
376 +// #compact unwind for _foo
377 +// .quad _foo
378 +// .set L1,LfooEnd-_foo
379 +// .long L1
380 +// .long 0x01010001
381 +// .quad 0
382 +// .quad 0
383 +//
384 +// #compact unwind for _bar
385 +// .quad _bar
386 +// .set L2,LbarEnd-_bar
387 +// .long L2
388 +// .long 0x01020011
389 +// .quad __gxx_personality
390 +// .quad except_tab1
391 +//
392 +//
393 +// Notes: There is no need for any labels in the the __compact_unwind section.
394 +// The use of the .set directive is to force the evaluation of the
395 +// range-length at assembly time, instead of generating relocations.
396 +//
397 +// To support future compiler optimizations where which non-volatile registers
398 +// are saved changes within a function (e.g. delay saving non-volatiles until
399 +// necessary), there can by multiple lines in the __compact_unwind table for one
400 +// function, each with a different (non-overlapping) range and each with
401 +// different compact unwind encodings that correspond to the non-volatiles
402 +// saved at that range of the function.
403 +//
404 +// If a particular function is so wacky that there is no compact unwind way
405 +// to encode it, then the compiler can emit traditional DWARF unwind info.
406 +// The runtime will use which ever is available.
407 +//
408 +// Runtime support for compact unwind encodings are only available on 10.6
409 +// and later. So, the compiler should not generate it when targeting pre-10.6.
410 +
411 +
412 +
413 +
414 +////////////////////////////////////////////////////////////////////////////////
415 +//
416 +// Final Linked Images: __TEXT,__unwind_info
417 +//
418 +////////////////////////////////////////////////////////////////////////////////
419 +
420 +//
421 +// The __TEXT,__unwind_info section is laid out for an efficient two level lookup.
422 +// The header of the section contains a coarse index that maps function address
423 +// to the page (4096 byte block) containing the unwind info for that function.
424 +//
425 +
426 +#define UNWIND_SECTION_VERSION 1
427 +struct unwind_info_section_header
428 +{
429 + uint32_t version; // UNWIND_SECTION_VERSION
430 + uint32_t commonEncodingsArraySectionOffset;
431 + uint32_t commonEncodingsArrayCount;
432 + uint32_t personalityArraySectionOffset;
433 + uint32_t personalityArrayCount;
434 + uint32_t indexSectionOffset;
435 + uint32_t indexCount;
436 + // compact_unwind_encoding_t[]
437 + // uint32_t personalities[]
438 + // unwind_info_section_header_index_entry[]
439 + // unwind_info_section_header_lsda_index_entry[]
440 +};
441 +
442 +struct unwind_info_section_header_index_entry
443 +{
444 + uint32_t functionOffset;
445 + uint32_t secondLevelPagesSectionOffset; // section offset to start of regular or compress page
446 + uint32_t lsdaIndexArraySectionOffset; // section offset to start of lsda_index array for this range
447 +};
448 +
449 +struct unwind_info_section_header_lsda_index_entry
450 +{
451 + uint32_t functionOffset;
452 + uint32_t lsdaOffset;
453 +};
454 +
455 +//
456 +// There are two kinds of second level index pages: regular and compressed.
457 +// A compressed page can hold up to 1021 entries, but it cannot be used
458 +// if too many different encoding types are used. The regular page holds
459 +// 511 entries.
460 +//
461 +
462 +struct unwind_info_regular_second_level_entry
463 +{
464 + uint32_t functionOffset;
465 + compact_unwind_encoding_t encoding;
466 +};
467 +
468 +#define UNWIND_SECOND_LEVEL_REGULAR 2
469 +struct unwind_info_regular_second_level_page_header
470 +{
471 + uint32_t kind; // UNWIND_SECOND_LEVEL_REGULAR
472 + uint16_t entryPageOffset;
473 + uint16_t entryCount;
474 + // entry array
475 +};
476 +
477 +#define UNWIND_SECOND_LEVEL_COMPRESSED 3
478 +struct unwind_info_compressed_second_level_page_header
479 +{
480 + uint32_t kind; // UNWIND_SECOND_LEVEL_COMPRESSED
481 + uint16_t entryPageOffset;
482 + uint16_t entryCount;
483 + uint16_t encodingsPageOffset;
484 + uint16_t encodingsCount;
485 + // 32-bit entry array
486 + // encodings array
487 +};
488 +
489 +#define UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry) (entry & 0x00FFFFFF)
490 +#define UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry) ((entry >> 24) & 0xFF)
491 +
492 +
493 +
494 +#endif
495 +
496 --
497 1.8.3.1
|